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Abstract

This paper presents a theoretical study of mixed convection flow in a vertical duct filled with a fluid-saturated porous medium u
assumption thatε, the ratio of the duct width to the heated length, is small, i.e., that the duct is narrow. It is assumed that a fully de
flow has already been set up in the duct before localised heating on one wall causes the flow to be changed by the action of
forces, as measured by the mixed convection parameter,λ. An analytical solution is derived for the case when both the Péclet numbePe,
andλ are ofO(1). It is found that reversed flow appears at leading order whenλ > 2. This is confirmed by numerical integrations of t
governing equations, forP = εPe= 100 and a range of values ofλ, whereε → 0 andPe= O(ε−1). The limiting cases ofP � 1 andP � 1
(boundary layer) withλ variable andλ → ∞ (free convection limit) are also studied. Thenumerical results show very good agreement w
the analytical and asymptotic solutions.
 2003 Elsevier SAS. All rights reserved.
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1. Introduction

Heat transfer induced by buoyancy effects in flu
saturated porous media has received considerable atte
over the last several decades because of numerous a
cations in geophysics and energy-related engineering p
lems. Such applications include heat exchangers, porou
sulations, solar power collectors, heat storage beds, nu
waste disposals, energy efficient drying processes, enha
recovery of petroleum resources, underground spread of
lutants and building structure insulation and food proce
ing, to name but a few. All these applications have led
the large number of publications in this area of heat trans
A detailed review of the subject, including exhaustive lists
references, can be found in the books by Ingham and Pop
Nield and Bejan [2], Vafai [3], and Pop and Ingham [4].

In the context of thermal insulation applications, one c
identify a large class of convection problems consisting
heat transfer in a differentially heated porous cavity. A
alytical work includes numerical solutions, boundary la
solutions, integral analyses, and series solutions. A deta
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review of this topic, was recently performed by Vafai a
Hadim [5], and Lai [6].

Recent technological implications have given rise
increased interest in mixed convection problems in vertica
channels, pipes and annuli because of their application
nuclear reactors, heat exchangers, electronic system cooling
etc. The fully-developed and parallel flow assumptions
often made and analytical solutions become available t
facilitate the analysis of heat transfer characteristics. F
these studies it became clearthat there were two majo
influences on the heat transfer, namely the geometrica
configuration and the developed fluid flow. This interact
between the heat transfer and the fluid flow of a visc
(non-porous) fluid has been first considered by Mahm
and Merkin [7]. They studied the mixed connection flow
a vertical duct under the assumption that the ratio of the
width to the length over which the wall is heated is sm
In addition, it was assumed that a fully developed Poiseu
flow has already been set up in the duct before heat from
wall causes this to be changed by the action of the buoya
forces.

A review of the open literature reveals, however, t
there has been less attention paid to mixed convection in
a vertical duct filled with a porous medium, see Lai [
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Nomenclature

g gravitational acceleration . . . . . . . . . . . . . . m·s−1

h width of the duct . . . . . . . . . . . . . . . . . . . . . . . . . m
K permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

l length of the heated section of the duct wall . m
p∗ pressure . . . . . . . . . . . . . . . . . . . . . . . . kg·m−1·s−2

P modified Péclet number for a porous medium
Pe Péclet number for a porous medium
q0, q1 non-dimensional heat fluxes on the walls
Q prescribed flow rate . . . . . . . . . . . . . . . . . . m2·s−1

R modified Rayleigh number for a porous medium
Ra Rayleigh number for a porous medium
T fluid temperature . . . . . . . . . . . . . . . . . . . . . . . . . K
T0 ambient temperature . . . . . . . . . . . . . . . . . . . . . . K
u,v non-dimensional velocities in thex andy

directions, respectively
x, y non-dimensional Cartesian coordinates

Greek letters

αm effective thermal diffusivity . . . . . . . . . . . m2·s−1

β thermal expansion coefficient . . . . . . . . . . . . K−1

�T applied temperature difference . . . . . . . . . . . . . K
ε ratio of the duct width to heated length
λ mixed convection parameter
µ dynamic viscosity . . . . . . . . . . . . . . . kg·m−1·s−1

ν kinematic viscosity . . . . . . . . . . . . . . . . . . m2·s−1

θ non-dimensional temperature
ψ non-dimensional streamfunction

Subscript

w evaluated at the wall

Superscripts

∗ dimensional variables
′ differentiation with respect tox
y-
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Hadim [8] carried out a numerical study of buoyanc
assisted mixed convection in an isothermally heated ver
channel filled with a fluid-saturated porous medium.
employed the Darcy–Brinkman–Forchheimer model
presented results in terms of the modified Grashof num
Gr, Darcy number,Da, Reynolds number,Re, inertial
coefficient,F , and the Prandtl number,Pr. These results
show that the effects of varying the Grashof and Reyno
numbers for a given Darcy number only affect the reg
close to the entrance; and in the fully developed reg
forced convection dominates the overall heat transfer. In th
Darcy flow regime, the heat transfer rate is governed
the single mixed convection parameterGr/Re. The Nusselt
number increases withGr/Re in the inlet region but is
independent of this parameter in the fully developed region

It is not possible to compare the present results with th
of Hadim [8] since the temperature profiles considered th
are different from those in the present paper, and, furt
Hadim’s work lies squarely within the elliptic regime whe
upstream influence is significant, whereas the present wo
is within the parabolic regime due to the narrowness of
gap compared with the streamwise distance over which
boundary temperature profile varies.

Mixed convection in a vertical porous channel subj
to asymmetric wall heating conditions has been studied
Hadim and Chen [9]. Two heating conditions have be
considered: uniform wall temperature and uniform w
heat flux, respectively. Their results show that the h
transfer enhancement in the mixed convection regim
more pronounced for the heating condition by uniform w
temperature than by uniform wall heat flux.

Lai et al. [10] have carried out a numerical study
examine the effects of forced flow on free convect
induced by a finite heat source on an otherwise adiab
vertical wall of a two-dimensional wall channel. The chan
was considered to be isothermally cooled. In the abse
of a forced flow, it is expected that a recirculatory flo
will be induced by an isolated heat source. The buoyan
induced flow pattern is significantly modified when
external pressure gradient causes upflow. When the fo
flow is weak, buoyancy effects dominate the velocity fi
generally. However, the acceleration caused by buoya
forces deflects the main flow toward the heat source, cau
a recirculation zone at the cold wall side. An increase
the externally induced velocity, or Péclet number, mo
the convective cell upward. This delays the separation
the main flow from the cold wall. When the Péclet num
is large, the enhanced thermal convection in the upw
direction weakens the opposing buoyant effects on
cold wall. As a result, the strength of the secondary fl
decreases substantially.

The purpose of the present paper is therefore to exam
the mixed convection flow in a vertical duct filled with
porous medium assuming that a temperature differenc
applied on one wall of the duct, while the other wall
maintained at a constant ambient temperature. It is
assumed that a fully developed flow has already b
set up in the duct before heat from the wall causes
to be changed by the action of the buoyancy forces
measured by the mixed convection parameterλ. Under these
assumptions, we shall study the case of a narrow duct, th
where the ratio of the duct width to the length over which
wall is heated,ε, is small, a case considered by Mahmo
and Merkin [7] for a clear fluid narrow duct. We consid
first the case when the Péclet number,Pe, and the mixed
convection parameterλ are ofO(1). Here the problem o
solving the basic equations forε � 1 can be reduced to
simple analytical calculation in powers ofε. This solution
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shows regions of reversed flow for both heated (λ > 0)
and cooled (λ < 0) walls in line with the numerical stud
made by Lai et al. [10]. However, the analytical soluti
obtained forPe= O(1) breaks down whenPe is of O(ε−1)

and the governing equations, written in terms ofλ and the
modified Péclet number,P = εPe, are solved numerically
using the Keller-box method for a range of values ofλ and
P . Analytical solutions are also presented for cases wh
P � 1 with λ fixed. Finally, numerical solutions for th
boundary layer case,P � 1, are presented for a choice
values ofλ and cases whereP is fixed andλ � 1 (the free
convection limit).

2. Basic equations

Consider the problem of steady mixed convection flow
a vertical duct filled with a fluid-saturated porous mediu
We assume that the convecting fluid and the porous med
are everywhere in local thermodynamic equilibrium, tha
the temperature of the fluid is everywhere below boil
point, that Darcy’s law and the Boussinesq approxima
hold, that the properties of the fluid and the porous med
are constant except for the density in the Darcy’s law,
the porous medium is homogeneous and isotropic, and
boundary, thermal dispersion and viscous dissipation eff
are neglected. Under these assumptions, the gove
differential equations are, see Nield and Bejan [2],

∂u∗

∂x∗ + ∂v∗

∂y∗ = 0 (1)

∂u∗

∂y∗ − ∂v∗

∂x∗ = gKβ

ν

∂T

∂y∗ (2)

u∗ ∂T

∂x∗ + v∗ ∂T

∂y∗ = αm

(
∂2T

∂x∗2
+ ∂2T

∂y∗2

)
(3)

whereu∗ andv∗ are the velocity components in thex∗ and
y∗ directions, respectively,T is the fluid temperature,g is
the acceleration due to gravity,K is the permeability of the
porous medium,β is the coefficient of thermal expansio
ν is the kinematic viscosity,αm is the effective therma
diffusivity, and x∗, y∗ are the Cartesian coordinates
shown in Fig. 1. We assume that the boundary condit
to be applied are

v∗ = 0 ony∗ = 0 andy∗ = h

T = T0 ony∗ = h (4)

T = T0 + �T θw(x) ony∗ = 0, |x∗| < l

together with the constant flux condition that

h∫
0

u∗ dy∗ = Q (5)

where h is the width of the duct,T0 is the ambient
temperature,l is the streamwise extent of the appli
t

Fig. 1. Physical model and coordinate system.

temperature difference�T , Q is the (prescribed) flow rat
andθw(x) is the (non-dimensional) temperature distribut
on the duct wally∗ = 0 with θw(x) localized to a region
of streamwise extent ofO(1), i.e., we takeθw(x) = 0 for
|x| > 1. Consequently, well upstream (i.e., asx∗ → −∞)
the flow will be unaffected by the heat supplied from t
wall y∗ = 0 and will be given by

u∗ = −K

µ

∂p∗

∂x∗ = const., v∗ = 0, T = T0 (6)

To make Eqs. (1)–(3) non-dimensional, we define
following variables:

x = x∗/l, y = y∗/h, u = (h/Q)u∗

v = (l/Q)v∗, T − T0 = �T θ
(7)

so that we get

∂u

∂x
+ ∂v

∂y
= 0 (8)

∂u

∂y
− ε2 ∂v

∂x
= λ

∂θ

∂y
(9)

∂2θ

∂y2
+ ε2 ∂2θ

∂x2
= εPe

(
u

∂θ

∂x
+ v

∂θ

∂y

)
(10)

whereε is the ratio of duct width to heated length,Pe is the
Péclet number for a porous medium andλ is the buoyancy
or mixed convection parameter, which are defined as

ε = h/l, Pe= Q/αm, λ = Ra/Pe (11)

with Ra= gKβ�T h/ναm being the Rayleigh number for
porous medium.

The boundary conditions (4) together with the fl
condition (5) become
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v = 0 ony = 0 andy = 1

θ = θw(x) ony = 0, |x| < 1, θ = 0 ony = 1
(12)

and
1∫

0

udy = 1 (13)

Further, we introduce the streamfunctionψ defined in the
usual way as

u = ∂ψ

∂y
, v = −∂ψ

∂x
(14)

so that Eqs. (9) and (10) can be written as

∂2ψ

∂y2
+ ε2∂2ψ

∂x2
= λ

∂θ

∂y
(15)

∂2θ

∂y2 + ε2 ∂2θ

∂x2 = εPe

(
∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y

)
(16)

subject to

ψ = 0 ony = 0, ψ = 1 ony = 1

θ = θw(x) ony = 0, |x| < 1, θ = 0 ony = 1
(17)

where the boundary conditionψ = 1 on y = 1 results in
from (13) and (14). We shall now consider different ca
depending on the parametersε, Pe and λ. Attention is
restricted to positive values ofλ since the symmetry o
the problem is such that the same equations and boun
conditions are obtained when making the transforma
λ → −λ, ψ → −ψ and x → −x. Negative values ofλ
correspond to a cooled strip.

3. Analysis

3.1. Narrow duct flow,ε � 1, Pe andλ of O(1)

In this case, we look for a solution of Eqs. (15) and (1
of the form

ψ = ψ0 + εψ1 + ε2ψ2 + · · ·
θ = θ0 + εθ1 + ε2θ2 + · · · (18)

Substituting these series into Eqs. (15) and (16), and ap
ing the boundary condition (17), we get, after some alge

θ0 = (1− y)θw(x)

ψ0 = y + 1

2
λθw

(
y − y2)

θ1 = Peθ ′
w

[
− 1

3
y + 1

2
y2 − 1

6
y3

+ λθw

(
−1

8
y + 1

4
y2 − 1

6
y3 + 1

24
y4

)] (19)

ψ1 = λPeθ ′
w

[
1

24
y − 1

6
y2 + 1

6
y3 − 1

24
y4

+ λθw

(
1

y − 1
y2 + 1

y3 − 1
y4 + 1

y5
)]
80 16 12 24 120
y

where primes denote differentiation with respect tox.
It is seen from (19) that, in order to determine the flow a

heat transfer characteristics, we have to specify a functi
form for θw(x). Following Mahmood and Merkin [7], we
take

θw(x) =

cos2

(
πx

2

)
for |x| < 1

0 for |x| > 1
(20)

as this function and its first derivative are continuous
|x| = 1.

3.2. Narrow gap approximation,ε → 0, and Pe ofO(ε−1)

3.2.1. Numerical solution
It is seen from Eq. (16) that the series solution (18) bre

down whenPe is of O(ε−1), i.e., when the convective term
in this equation become important to leading order. In
case we put

P = εPe (21)

whereP , a modified Péclet number for a porous medium
a constant ofO(1). Eqs. (15) and (16) then become

∂2ψ

∂y2 = λ
∂θ

∂y
(22)

∂2θ

∂y2
= P

(
∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y

)
(23)

and are subjected to the boundary conditions (17) withθw(x)

given by Eq. (20). In addition, we have to specify the start
conditions of Eqs. (22) and (23) since these equations
parabolic. These starting conditions can be obtained f
the first equations of (6) as

u = 1, θ = 0 for x = −1 (24)

or

ψ = y, θ = 0 for x = −1 (25)

where we put const= Q/l. In fact, the condition (25) shoul
be applied asx → −∞, but the parabolic nature of Eqs. (2
and (23) ensures that we can replace the conditionx → −∞
by x = −1.

The physical quantity of importance for this problem
the heat flux on the walls which is given by

q0 = −
(

∂θ

∂y

)
y=0

, q1 = −
(

∂θ

∂y

)
y=1

(26)

3.2.2. Analytical solution forP � 1
The solution of Eqs. (15) and (16) subject to the bound

conditions, (17), forP � 1 andλ fixed can be obtained from
Eqs. (18) and (19) as

ψ = y + 1
λθw

(
y − y2)
2
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+ λPθ ′
w

[(
1

24
y − 1

6
y2 + 1

6
y3 − 1

24
y4

)

+ λθw

(
1

80
y − 1

16
y2 + 1

12
y3

− 1

24
y4 + 1

120
y5

)]
+ · · · (27)

θ = θw(1− y) + Pθ ′
w

[
−1

3
y + 1

2
y2 − 1

6
y3

+ λθw

(
−1

8
y + 1

4
y2 − 1

6
y3 + 1

24
y4

)]
+ · · ·

Thus, we have

q0 = θw(x) + Pθ ′
w

(
1

3
+ 1

8
λθw

)
+ · · ·

q1 = θw(x) − 1

6
Pθ ′

w

(
1+ 1

4
λθw

)
+ · · ·

(28)

3.2.3. The free convection limit,λ → ∞
In this case, we take

ψ = λφ(x, y) (29)

and keep the modified Rayleigh numberR = λP = εRa
fixed asλ → ∞. Eqs. (22) and (23) then become

∂2φ

∂y2
= ∂θ

∂y
(30)

∂2θ

∂y2 = R

(
∂φ

∂y

∂θ

∂x
− ∂φ

∂x

∂θ

∂y

)
(31)

with the boundary conditions

φ = 0, θ = θw(x) ony = 0

φ = λ−1, θ = 0 ony = 1
(32)

and

φ = λ−1y, θ = 0 asx → −∞ (33)

Further, we assume thatR ≈ λ−1 and takeR0 = λR. The
boundary conditions (32) suggest the following expans
for λ � 1:

φ = φ0 + λ−1φ1 + λ−2φ2 + · · ·
θ = θ0 + λ−1θ1 + λ−2θ2 + · · · (34)

where the functionsφi andθi , i = 0,1,2, . . . can be obtained
in analytical form. After some algebra, we get

ψ = 1

2
θw

(
y − y2)

+ 1

2
Rθwθ ′

w

(
1

40
y − 1

8
y2 + 1

6
y3 − 1

12
y4 + 1

60
y5

)

+ λ−1y + · · · (35)

θ = θw(1− y) + 1

2
Rθwθ ′

w

(
−1

4
y + 1

2
y2 − 1

3
y3 + 1

12
y4

)

+ λ−1Rθ ′
w

(
−1

y + 1
y2 − 1

y3
)

3 2 6
+ 1

2
R2θwθ ′

w

(
1

10080
y + 1

80
y2 − 1

40
y3

+ 1

96
y4 + 1

120
y5 − 1

120
y6 + 1

5040
y7

)

+ 1

8
R2θw

(
θwθ ′

w

)′
(

23

2520
y − 1

15
y3 + 1

8
y4

− 1

10
y5 + 7

180
y6 − 2

315
y7

)
+ · · · (36)

Thus, we have

q0 = θw(x) + R

8
θwθ ′

w + Rθ ′
w

3λ
− R2

20160
θw

(
θ ′
w

)2

− 23R2

20160
θw

(
θwθ ′

w

)′ + · · · (37)

q1 = θw(x) − R

24
θwθ ′

w − Rθ ′
w

6λ
+ 3R2

2240
θwθ ′

w

+ R2

4032
θw

(
θwθ ′

w

)′ + · · · (38)

3.2.4. Numerical solutions forP � 1
An asymptotic balance of terms asP → ∞ in Eqs. (22)

and (23) suggests the scalings,

x = X, y = P−1/2Y

ψ = P−1/2Ψ (X,Y ), θ = Θ(X,Y )
(39)

Thus, we get the following boundary layer equations:

∂2Ψ

∂Y 2 = λ
∂Θ

∂Y
(40)

∂2Θ

∂Y 2 = ∂Ψ

∂Y

∂Θ

∂X
− ∂Ψ

∂X

∂Θ

∂Y
(41)

subject to the boundary conditions,

Ψ = 0, Θ = θw(X) onY = 0, and
∂Ψ

∂Y
→ 1, Θ → 0 asY → ∞ (42)

The condition for large values ofY allow the streamfunction
and temperature fields to return to the state of unifo
velocity and zero temperature which exists outside
boundary layer.

4. Results and discussion

Eqs. (22), (23), (30), (31) and (40), (41) have been so
numerically for various values of the parametersP and
λ using the Keller-box method. This method is describ
in detail in the book by Cebeci and Bradshaw [11].
is a parabolic solver, and its usual implementation u
multi-dimensional Newton–Raphson iteration to solve th
discretised equations (written in first order form) at ea
successive streamwise position. The grid sizes use
the streamwise and normal directions areδx = 0.005 and
δy = 0.01, respectively, for computations corresponding
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Fig. 2. (a) Isotherms and (b) streamlines forλ = 2.5 and forP = 10−4

(top frame), 1, 2, 5, 10, 20, 50, and 100 (bottom frame). 19 equally sp
isotherms are drawn at an interval of 0.05 and 9 equally spaced streamlin
at an interval of 0.1.

P = O(1). Some representative results for the flow and h
transfer characteristics are shown in Figs. 2–12.

Fig. 2(a) and (b) show the computed isotherms
streamlines, respectively, for the caseλ = 2.5 for a variety of
values ofP . WhenP is very small we recover the solutio
corresponding to the leading term in the expansion (18) fθ

where the conduction takes place solely across the layer
neither conduction nor advection up the layer. As the va
of P increases, forced convective effects become stro
and the effect of the localisedheating spreads increasing
far downstream. Once the Péclet number is as larg
100 a distinct boundary layer has formed, which only j
impinges on the unheated wall within the computatio
domain used.
Fig. 3. Variation withx of the heat transfer at the left wall forλ = 2.5 and
for P = 10−4, 1, 2, 5, 10, 20, 50, and 100.

On differentiating the analytical solution given byψ0 in
Eq. (19), we see that reversed flow should appear in
leading order solution onceλ > 2, and, forλ = 2.5, a region
of reversed flow may be expected to be well-established
may be seen in Fig. 2(b). However, for the cases sho
the recirculation is quite weak, and is sufficiently so tha
was possible to integrate through these regions withou
Keller-box method losing its numerical stability. Equivale
solutions forλ = 3 andP = 10−4 cannot be obtained sinc
the recirculation is too strong. Again, asP increases, forced
convective effects increasesand the streamlines appear
become more uniform, with a slight deviation towards
heated strip.

These results are summarised in Figs. 3 and 4 which s
the rates of heat transfer on they = 0 and y = 1 walls,
respectively. On the heated surface,y = 0, the temperatur
gradient remains negative whenP is small reflecting the
fact that the temperature field is passive with respect tx.
At higher values ofP the heat transfer is multiply-signed—
once the fluid near the heated strip has been warmed it the
travels downstream and encounters a relatively cold sur
and therefore the sign of the rate of heat transfer changes
see in Fig. 3 that the position where the heat transfer take
most negative value is upstream of where the surface at
it maximum value; this is due to the fact that the tempera
field develops from the leading edge of the heated strip
the region of non-zero temperature thickens. Once the
is downstream of the heated strip there is gradual reco
towards the zero heat transfer situation where the fluid in
channel returns to a uniform temperature.

In Fig. 4 the heat transfer on the uncooled wall,y = 1,
is shown. This figure illustrates how effective the flow
in delaying the spread of the thermal field to they = 1
surface. The position of maximum absolute heat tran
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Fig. 4. Variation withx of the heat transfer at the right wall forλ = 2.5 and
for P = 10−4, 1, 2, 5, 10, 20, 50, and 100.

travels downstream asP increases. Moreover, the large
absolute heat transfer alsodecreases with increasingP
simply because the fluid has travelled further along a col
channel before the peak is encountered.

Figs. 5–8 are concerned with the effects of varyingλ

for one value ofP , namely,P = 100. Fig. 5 shows the
isotherms and streamlines for these cases. SinceP = 100
the flows already show a distinct boundary layer charac
The primary effect of increasingλ is to increase the fre
convective effects. This is seen in two different ways
Fig. 5(a): first, the thermal field spreads further downstrea
and second, the thermal boundary layer becomes thi
near the heated strip. Both of these effects may be attrib
to greater streamwise velocities induced within the cavity
The corresponding streamlines in Fig. 5(b) show a m
greater distortion than those shown in Fig. 2(b). Wheλ
is relatively large the flowfield near the heated strip is v
similar qualitatively to thatcorresponding to an isolate
heated surface in an unbounded fluid; a distinct entrainm
into the developing thermal boundary layer is evident.

In each numerical simulation we calculated the minim
streamwise velocity, miny ∂ψ/∂y, as a function ofx. In
Fig. 6 we display these values for the caseP = 100. The
position of minimum streamwise velocity, which alwa
occurs on the cold surface, moves forward asλ increases
However, whenλ = 12.23856, the minimum streamwis
velocity is zero, and therefore, at greater values ofλ there
is recirculation.

The local heat transfers from each surface are show
Figs. 7 and 8, where it is important to note the differ
scalings on both axes. The position of the maximum abso
rate of heat transfer on the hot surface aty = 0 is affected
only very slightly by variations inλ, since the flow may
be regarded as being within the boundary layer reg
r

(a)

(b)

Fig. 5. (a) Isotherms and (b) streamlines forP = 100 andλ = 10−4 (top
frame), 1, 2, 5, 10, and 12.23856. 19 equally spaced isotherms are dra
an interval of 0.05 and 9 equally spaced streamlines at an interval of 0

due to the size ofP , and therefore changes inλ serve
only to modify the thickness of the boundary layer. O
the other hand, at the cold surface, the position w
the magnitude of the heat transfer is maximised mo
further downstream asλ increases. This is consistent wi
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Fig. 6. Variation withx of the minimum streamwise velocity forP = 100
andλ = 10−4 (top frame), 1, 2, 5, 10, and 12.23856 (bottom frame).

Fig. 7. Variation withx of the heat transfer at the left wall forP = 100 and
λ = 10−4, 1, 2, 5, 10, and 12.23856.

the increasing vigour of the flow rendering cross-stre
conduction less effective.

In the two main cases considered so far, the res
we were able to obtain are, in general, subject to
restriction that there must be no recirculation. For exam
for P = 100, we able to compute a flow for whichλ = 12.3,
but not for λ = 12.4 for which recirculation is stronge
Therefore we have computed, for the sake of reference
value ofλ above which recirculation occurs as a functi
of P , and the corresponding value ofx at which the
minimum streamwise velocity is zero. These values
Fig. 8. Variation withx of the heat transfer at the right wall forP = 100
andλ = 10−4, 1, 2, 5, 10, and 12.23856.

Fig. 9. Variation with log10P of the value ofλ above which separation
occurs and the corresponding value ofx at which separation first arises.

shown in Fig. 9. WhenP is small the critical value o
λ is close to 2, which is consistent with the analysis
Section 3.1 and the comment in the third paragraph of
section. Numerically we find thatλc = 2 + O(P 2) when
P � 1. On the other hand, forP � 1, thenλc ∼ 1.22P 1/2.
The corresponding critical values ofx arexc ∼ 0.13P for
P � 1 andxc ∼ 0.05P for P � 1. The coefficients quote
here are necessarily inaccurate because they are not
subject to the discretisation errors inherent in the Keller-
method, but are also subject to interpolation errors du



I. Pop et al. / International Journal of Thermal Sciences 43 (2004) 489–498 497

of a

hat

sfer,

r

d to

n in

s in

son
ermal

nes
the fact that they are obtained from discrete solutions
marching method.

Fig. 10 compares the heat transfer on the wally = 0
which is obtained by solving Eqs. (22) and (23) forλ = 1
and P = 50,100, with that obtained from theP → ∞
boundary layer equations, (40) and (41). It is found t
P−1/2∂θ/∂y|y=0 matches very well with∂Θ/∂Y |Y=0. In
fact, Fig. 11 shows that the asymptotic rate of heat tran

Fig. 10. Variation withx (or X) of the left wall rate of heat transfer fo
λ = 1. The continuous line corresponds to∂Θ/∂Y |Y=0 from the large-P
asymptotic theory, while the short and long dashed lines correspon
P−1/2∂θ/∂y|y=0, for P = 100 andP = 50, respectively.

Fig. 11. Variation withX of the heat transfer at the left wall,Y = 0, for
P → ∞, the boundary layer limit, forλ = 10−4, 1, 10, and 100.
∂Θ/∂Y |Y=0, retains the same shape as those show
Figs. 3 and 7.

Finally, Fig. 12 shows the isotherms and streamline
theP → ∞ limit for various values ofλ. All the streamlines
are depicted at intervals of 1 in order to facilitate compari
between the cases. It is seen that the shapes of the th
boundary layer match well with theP = O(1) cases (see
Figs. 2(a) and 12(a)). However, whenλ is large, there is
a thinning of the thermal boundary layer. The streamli

(a)

(b)

Fig. 12. (a) Isotherms and (b) streamlines forP → ∞ for λ = 10−4, 1, 10,
and 100. 9 equally spaced isotherms are drawn at an interval of 0.1 and
equally spaced streamlines are drawn at an interval of 1.0.
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clearly display the increasing strength of the overall fl
due to buoyancy forces asλ increases, as may be seen
Fig. 12(b).

5. Conclusions

In this paper the main features and results of a theo
cal investigation of mixed convection flow in a narrow ve
tical duct filled with a porous medium where the bounda
are held at identical cold temperatures withthe exception
of local heating on one wall. Both analytical and numerica
results are obtained for some values of the governing p
metersP (or Pe) andλ. The isotherms and streamlines,
well as the heat transfer from both walls have been de
mined and presented as a function of these parameter
of x, the streamwise distance. Good agreement betwee
numerical and analytical results has been shown to exist
the other hand, it was shown that the interaction betw
the heat transfer and the fully developed flow has a sig
cant effect in situations where the parametersP andλ take
limiting values. In particular, regions of reversed flow a
obtained forλ = 2.5 andP small. We have found those va
ues ofλ, as a function ofP , above which recirculating flow
will occur. Approximate expressions (correlating equatio
were obtained numerically for such critical values ofλ for
both small and large values ofP .

It is not possible to compare the present results with th
of Hadim [8] since the temperature profiles considered th
are different from those in the present paper, and, furt
Hadim’s work lies squarely within the elliptic regime whe
upstream influence is significant, whereas the present wo
is within the parabolic regime due to the narrowness of
gap compared with the streamwise distance over which
boundary temperature profile varies. Likewise, we have
been able to compare with experimental results due to
absence within the open literature.
d
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