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Abstract

This paper presents a theoretical study of mixed convection flow in a vertical duct filled with a fluid-saturated porous medium under the
assumption that, the ratio of the duct width to the heated length, is small, i.e., that the duct is narrow. It is assumed that a fully developed
flow has already been set up in the duct before localised heating on one wall causes the flow to be changed by the action of buoyancy
forces, as measured by the mixed convection parametdm analytical solution is derived for the case when both the Péclet nuger,
andx are of O(1). It is found that reversed flow appears at leading order when2. This is confirmed by numerical integrations of the
governing equations, faP = sPe= 100 and a range of values bfwheres — 0 andPe= 0 (¢~1). The limiting cases of « 1 andP > 1
(boundary layer) with. variable and. — oo (free convection limit) are also studied. Themerical results show very good agreement with
the analytical and asymptotic solutions.

0 2003 Elsevier SAS. All rights reserved.

1. Introduction review of this topic, was recently performed by Vafai and
Hadim [5], and Lai [6].
Heat transfer induced by buoyancy effects in fluid- Recent technological implications have given rise to

saturated porous media has received considerable attentioincreased interest in mixed ogection problems in vertical
over the last several decades because of numerous applichannels, pipes and annuli because of their applications in
cations in geophysics and energy-related engineering prob-nuclear reactors, heat exchargelectronic system cooling,
lems. Such applications include heat exchangers, porous inetc. The fully-developed and parallel flow assumptions are
sulations, solar power collectors, heat storage beds, nucleabften made and analytical lstions become available to
waste disposals, energy efficient drying processes, enhanceghcilitate the analysis of heat transfer characteristics. From
recovery of petroleum resources, underground spread of pol-these studies it became cletirat there were two major
lutants and building structure insulation and food process- influences on the heat traesf namely the geometrical
ing, to name but a few. All these applications have led to configuration and the developed fluid flow. This interaction
the large number of publications in this area of heat transfer. hetween the heat transfer and the fluid flow of a viscous
A detailed review of the subject, including exhaustive lists of (non-porous) fluid has been first considered by Mahmood
references, can be found in the books by Ingham and Pop [1].and Merkin [7]. They studied the mixed connection flow in
Nield and Bejan [2], Vafai [3], and Pop and Ingham [4]. a vertical duct under the assumption that the ratio of the duct

In the context of thermal insulation applications, one can jidth to the length over which the wall is heated is small.
identify a large class of convection problems consisting of | addition, it was assumed that a fully developed Poiseuille
heat transfer in a differentially heated porous cavity. An- fiow has already been set up in the duct before heat from the
alytical work includes numerical solutions, boundary layer \all causes this to be changed by the action of the buoyancy
solutions, integral analyses, and series solutions. A detailedig ces.

A review of the open literature reveals, however, that

~* Corresponding author. there has been less attemtipaid to mixed convection in

E-mail addresspopi@math.ubbcluj.ro (1. Pop). a vertical duct filled with a porous medium, see Lai [6].
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Nomenclature
g gravitational acceleration.............. -gnt Greek letters
h width of the duct........oiiiii, , m . effective thermal dlfoS|V|ty ........... a1
K permeability ........... o EEEETETRRY m B thermal expansion coefficient. . ... ... .. .. -k
! . length of the heated section of the duct x"a_"é M AT  applied temperature difference............. K
p PreSSUre.........coovvvvnnnnnnn. ky=-s € ratio of the duct width to heated length
P modified Péclet number for a porous medium 2 mixed convection parameter
Pe Péclet number for a porous medium n dynamic viscosity ............... ko157t
q0.q1  nhon-dimensional heat fluxes on the walls v kinematic viscosity .................. e
0 prescribed flowrate.................. 2rg 1 0 non-dimensional temperature
R modified Rayleigh number for a porous medium non-dimensional streamfunction
Ra ngle|gh number for a porous medium Subscript
T fluid temperature ...l K | dat th I
To ambient temperature ...................... K W evaluated at the wa
u,v non-dimensional velocities in theandy Superscripts

directions, respectively * dimensional variables
X,y non-dimensional Cartesian coordinates ! differentiation with respect to

Hadim [8] carried out a numerical study of buoyancy- vertical wall of a two-dimensional wall channel. The channel
assisted mixed convection in an isothermally heated vertical was considered to be isothermally cooled. In the absence
channel filled with a fluid-saturated porous medium. He of a forced flow, it is expected that a recirculatory flow
employed the Darcy—Brinkman—Forchheimer model and will be induced by an isolated heat source. The buoyancy-
presented results in terms of the modified Grashof number,induced flow pattern is significantly modified when an
Gr, Darcy number,Da, Reynolds numberRe inertial external pressure gradient causes upflow. When the forced
coefficient, F, and the Prandtl numbePRr. These results  flow is weak, buoyancy effects dominate the velocity field
show that the effects of varying the Grashof and Reynolds generally. However, the acceleration caused by buoyancy
numbers for a given Darcy number only affect the region forces deflects the main flow toward the heat source, causing
close to the entrance; and in the fully developed region, a recirculation zone at the cold wall side. An increase in
forced convection dominatesdloverall heat transfer. Inthe  the externally induced velocity, or Péclet number, moves
Darcy flow regime, the heat transfer rate is governed by the convective cell upward. This delays the separation of
the single mixed convection parameter/Re The Nusselt the main flow from the cold wall. When the Péclet number
number increases witlisr/Re in the inlet region but is is large, the enhanced thermal convection in the upward
independent of this parameterthe fully developed region.  direction weakens the opposing buoyant effects on the

Itis not possible to compare the present results with those cold wall. As a result, the strength of the secondary flow
of Hadim [8] since the temperature profiles considered there decreases substantially.
are different from those in the present paper, and, further, The purpose of the present paper is therefore to examine
Hadim'’s work lies squarely within the elliptic regime where the mixed convection flow in a vertical duct filled with a
upstream influence is significerwhereas the present work porous medium assuming that a temperature difference is
is within the parabolic regime due to the narrowness of the applied on one wall of the duct, while the other wall is
gap compared with the streamwise distance over which themaintained at a constant ambient temperature. It is also
boundary temperature profile varies. assumed that a fully developed flow has already been

Mixed convection in a vertical porous channel subject set up in the duct before heat from the wall causes this
to asymmetric wall heating conditions has been studied by to be changed by the action of the buoyancy forces, as
Hadim and Chen [9]. Two heating conditions have been measured by the mixed convection paramgtéynder these
considered: uniform wall temperature and uniform wall assumptions, we shall study the case of a narrow duct, that is,
heat flux, respectively. Their results show that the heat where the ratio of the duct width to the length over which the
transfer enhancement in the mixed convection regime is wall is heatedg, is small, a case considered by Mahmood
more pronounced for the heating condition by uniform wall and Merkin [7] for a clear fluid narrow duct. We consider
temperature than by uniform wall heat flux. first the case when the Péclet numkee, and the mixed

Lai et al. [10] have carried out a numerical study to convection parametex are of O(1). Here the problem of
examine the effects of forced flow on free convection solving the basic equations fer« 1 can be reduced to a
induced by a finite heat source on an otherwise adiabaticsimple analytical caulation in powers ot. This solution



I. Pop et al. / International Journal of Thermal Sciences 43 (2004) 489-498 491

shows regions of reversed flow for both heated>( 0) x’

and cooled X < 0) walls in line with the numerical study g
made by Lai et al. [10]. However, the analytical solution 2
obtained forPe= 0 (1) breaks down wheReis of O (¢~ 1)

and the governing equations, written in termsioénd the
modified Péclet numbe? = ¢Pe are solved numerically
using the Keller-box method for a range of values.aind

P. Analytical solutions are also presented for cases where
P « 1 with A fixed. Finally, numerical solutions for the
boundary layer case? > 1, are presented for a choice of
values ofp and cases wherg is fixed andi > 1 (the free
convection limit).

1

Porous medium

T+ AT 6, (%)

-1

2. Basic equations .

Consider the problem of steady mixed convection flow in
a vertical duct filled with a fluid-saturated porous medium.
We assume that the convecting fluid and the porous medium
are everywhere in local therodynamic equilibrium, that
the temperature of the fluid is everywhere below boiling
point, that Darcy’s law and the Boussinesq approximation
hold, that the properties of the fluid and the porous medium
are constant except for the density in the Darcy’s law, that .
the porous medium is homogeneous and isotropic, and that*| > 1. Cc_)nsequently, well upstream (i.e., ﬁg__) —00)
boundary, thermal dispersion and viscous dissipation effectsthe flow will be u_naffec_ted by the heat supplied from the
are neglected. Under these assumptions, the governing¥@ll ¥* = 0 and will be given by

Fig. 1. Physical model and coordinate system.

temperature differencAT, Q is the (prescribed) flow rate
ando,, (x) is the (non-dimensional) temperature distribution
on the duct wally* = 0 with 6,,(x) localized to a region
of streamwise extent 00 (1), i.e., we taked,, (x) = 0 for

differential equations are, see Nield and Bejan [2], K op*

. . u* =——_—— =const, v* =0, T =To (6)
ou + av -0 (1) m ox*

* P
2x* 2y* KB T To make Egs. (1)-(3) non-dimensional, we define the

“u_9% _¢& p — (2) following variables:

ay*  dx* v ay*

aT aT 32T 3°T x=x*/l,  y=y*/h, u=(h/Qu"
wW— v — =apy| — + — (3) _ « _ (7)

dx* ay* ax*2  gy*2 v= (/0" T —To=AT0
whereu* andv* are the velocity components in thé& and so that we get
y* directions, respectively is the fluid temperatureg is
the acceleration due to gravitl, is the permeability of the 45, 5,
porous mediumg is the coefficient of thermal expansion, -+ P (8)
v is the kinematic viscosityy,, is the effective thermal
diffusivity, and x*, y* are the Cartesian coordinates as 4 _ 29v _ . 90 )
shown in Fig. 1. We assume that the boundary conditions 9y dx dy
to be applied are 2 2

a6 a6 a0 a0
P e 4112 o)

v"=0 ony*=0andy*=h ay ax ox dy
T=To ony*=h (4) wheres is the ratio of duct width to heated lengfeis the
T=To+ ATO,(x) ony" =0, |x*| <! Péclet number for a porous medium andgs the buoyancy

. . or mixed convection parameter, which are defined as
together with the constant flux condition that

h e=h/l, Pe= Q/apn, 1 =Ra/Pe (11)
/u dy*=0 () with Ra= gKBATh/va,, being the Rayleigh number for a
0 porous medium.
where h is the width of the duct,Tp is the ambient The boundary conditions (4) together with the flux

temperature,/ is the streamwise extent of the applied condition (5) become
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v=0 ony=0andy=1

12
0=0y,(x) ony=0, |x| <1, =0 ony=1 (12)
and
1
/udy:l (13)

0

Further, we introduce the streamfunctigndefined in the
usual way as

d d
U= _1/’ __ % (14)
ay dax
so that Eqgs. (9) and (10) can be written as
32 82 36
0V | 290 %0 (15)
dy? dx2 ay
826 326 dy 00 oy 90
0% 2970 _ pg( V00 9V 96 (16)
3y2 dx2 dy dx  dx dy
subject to
v=0 ony=0, Yy=1 ony=1 (17)
0=0,(x) ony=0, |x| <1, =0 ony=1

where the boundary conditior =1 on y = 1 results in
from (13) and (14). We shall now consider different cases
depending on the parametesrs Pe and 1. Attention is
restricted to positive values of since the symmetry of

the problem is such that the same equations and boundaryaze
conditions are obtained when making the transformation

A — —A, ¥ > —¢ and x — —x. Negative values oh
correspond to a cooled strip.

3. Analysis
3.1. Narrow duct flowg <« 1, Pe andi of O (1)
In this case, we look for a solution of Egs. (15) and (16)

of the form

Y =vo+eyr+elyat -

18
0 =60+ e01+e%0r+ - (18)

Substituting these series into Egs. (15) and (16), and apply-
ing the boundary condition (17), we get, after some algebra, b

o = (1= y)bu(x)

1
Yo=y+ —?»910()’ _)’2)

2
1 1 1
91=P991/u[_§)’+§y2—6y3
(19)
IV (A S I
wl =gyt — g o

1= Pl 1 12+13 1,4
1=ATC 94 T8 T T 247

1, 1, 1

a0y — 202 +=y°
“\80” 160 T 120 " 24° T 120

I. Pop et al. / International Journal of Thermal Sciences 43 (2004) 489—-498

where primes denote differentiation with respectto

Itis seen from (19) that, in order to determine the flow and
heat transfer characteristics, we have to specify a functional
form for 6,,(x). Following Mahmood and Merkin [7], we
take
cosz(% for x| <1
0

Ow (x) = (20)

for|x|>1

as this function and its first derivative are continuous at
x| = 1.

3.2. Narrow gap approximatiors,— 0, and Pe of0 (¢~1)

3.2.1. Numerical solution

Itis seen from Eg. (16) that the series solution (18) breaks
down wherPeis of O (¢~ 1), i.e., when the convective terms
in this equation become important to leading order. In this

case we put
P—=¢Pe (21)

where P, a modified Péclet number for a porous medium, is
a constant oD (1). Egs. (15) and (16) then become

92 20
v _,00 (22)
8y2 dy
dy 060 oy 06
_p(2V 20 oy (23)
dy2 dy dx  dx dy

and are subjected to the boundary conditions (17) wittx)
given by Eq. (20). In addition, we have to specify the starting
conditions of Eqgs. (22) and (23) since these equations are
parabolic. These starting conditions can be obtained from
the first equations of (6) as

u=1, 0=0 forx=-1 (24)
or
Y=y, 6=0 forx=-1 (25)

where we put const Q/ . Infact, the condition (25) should
be applied as — —oo, but the parabolic nature of Egs. (22)
and (23) ensures that we can replace the conditien —oco
yx=-1.

The physical quantity of importance for this problem is
the heat flux on the walls which is given by

(89) (89)
qo=—\ —— ) q1=—\ —
8y y:O 8y y=l

3.2.2. Analytical solution foP « 1

The solution of Egs. (15) and (16) subject to the boundary
conditions, (17), folP « 1 andx fixed can be obtained from
Egs. (18) and (19) as

(26)

1
¥=y+5Mu(y =%
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(27)

1 1 1
9=9w(1—y)+P9;,[—§y+§y2—5y3
1 1 1 1
20 (== +t2 ~-3, - 4
+ w< g/ T2 T T >}+

Thus, we have
(11
g0 ="0u(x) + PO, §+§wu, +e-
28
1, 1 (28)
q1=9w(x)—6P9w 1+Zkew 4.

3.2.3. The free convection limit,— oo
In this case, we take

Y =1p(x,y) (29)

and keep the modified Rayleigh numbRr= AP = ¢Ra
fixed ash — oo. E@s. (22) and (23) then become

2
9 _ 20 0)
dy2  dy
3826 dp 30 3¢ 90
_7=R£__£_ (31)
dy dy dx  dx dy
with the boundary conditions
=0, 0 =0y(x) ony=0
¢ | (x) y (32)
o=A"", =0 ony=1
and
p=»"1ty, 6=0 asx— —o0 (33)

Further, we assume th& ~ A»~1 and takeRy = AR. The

boundary conditions (32) suggest the following expansion

for A > 1:

¢ =do+ 1" tp1+ 1%+

34
0=00+r"101+21%0+ - (34)

where the functiong; ands;,i =0, 1, 2, ... can be obtained
in analytical form. After some algebra, we get

_l 2
1//—29w(y y)

1 1 1, 1, 1 1
+ —RGw%(—y -2+ - Syt 5)

2 20078 76’ T 120 "0
+aly 4 (35)
B 1 (1 1, 15 1,
0=6,(1—y)+ 2R9w9w<—4y+ 5y =3+

1 1 1
AiRe (== -2 _ =3
+ w< Y gy

+1R299/ 1 +12 1 s
2" "%l 10080 T 80" T 40°

Lla ls 1 1,
96" T120° T 120° T 5040
1, ./ 23 1 1
ZR%0,(0,0)) [ ===y — =3+ =y*

+ g R 0w (0uty) (2520y 150 Tg’
1. 7 ¢4 2 4
100 T180 38 )T

Thus, we have

(36)

R RO’ R? 2
=0 —0,06! wo_ O (6!
q0 w(x) + ) wYy + 3 20160 w( w)

23R? ,
——_— 9. (6,06

20160“’( wbu) +
R, R
22"~

(37)

w _"_ 3R29 9/
6L 2240 "%

q1=0y,(x) —

2

R
+ ——0u(0ub),) + -

4032 (38)

3.2.4. Numerical solutions faP > 1
An asymptotic balance of terms #&— oo in Egs. (22)
and (23) suggests the scalings,

x =X, y=p 2%

39
v = PY2u(x.y), (39)

0=0(X,Y)

Thus, we get the following boundary layer equations:

2y 3O

— = 40
Y2 Y (40)
20 W IO IV IO

e- e e (41)
Y2 Y X 94X 9Y

subject to the boundary conditions,

¥ =0, ®=04L(X) onY=0 and

v (42)
, ®—-0 asYy —
Y

The condition for large values af allow the streamfunction
and temperature fields to return to the state of uniform

velocity and zero temperature which exists outside the

boundary layer.

4. Resultsand discussion

Egs. (22), (23), (30), (31) and (40), (41) have been solved

numerically for various values of the parametdtsand
A using the Keller-box method. This method is described
in detail in the book by Cebeci and Bradshaw [11]. It

is a parabolic solver, and its usual implementation uses

multi-dimensional Newton—Rdnson iteration to solve the
discretised equations (written in first order form) at each

successive streamwise position. The grid sizes used in

the streamwise and normal directions dre= 0.005 and
8y = 0.01, respectively, for computations corresponding to
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Fig. 3. Variation withx of the heat transfer at the left wall far= 2.5 and
for P =104, 1, 2, 5, 10, 20, 50, and 100.

On differentiating the analytical solution given I in
Eq. (19), we see that reversed flow should appear in the
leading order solution once> 2, and, for. = 2.5, a region
of reversed flow may be expected to be well-established, as
may be seen in Fig. 2(b). However, for the cases shown,
the recirculation is quite weak, and is sufficiently so that it
was possible to integrate through these regions without the
Keller-box method losing its numerical stability. Equivalent
solutions fora = 3 andP = 10~* cannot be obtained since
the recirculation is too strong. Again, &sincreases, forced
convective effects increasesd the streamlines appear to
become more uniform, with a slight deviation towards the
P=10"* 1 2 5 10 20 50 100 heated Strip.
(b) These results are summarised in Figs. 3 and 4 which show
Fig. 2. (a) Isotherms and (b) streamlines foe= 2.5 and for P = 1074 the rate.‘s of heat ransfer on the= 0 andy = 1 walls,
(top frame), 1, 2, 5, 10, 20, 50, and 100 (bottom frame). 19 equally spaced respectively. On the heated surfages 0, the temperature
isotherms are drawn at an interval 008 and 9 equally spaced streamlines ~ gradient remains negative wheh is small reflecting the
at an interval of Q. fact that the temperature field is passive with respeat.to
At higher values ofP the heat transfer is multiply-signed—
once the fluid near the heatedigthas been warmed it then
P = 0(1). Some representative results for the flow and heat rayels downstream and encounters a relatively cold surface,
transfer characteristics are shown in Figs. 2-12. and therefore the sign of the rate of heat transfer changes. We
Fig. 2(a) and (b) show the computed isotherms and see in Fig. 3 that the position where the heat transfer takes its
streamlines, respectively, for the case 2.5 foravariety of ~ most negative value is upstream of where the surface attains
values ofP. When P is very small we recover the solution  jt maximum value; this is due to the fact that the temperature
corresponding to the leading term in the expansion (18) for  field develops from the leading edge of the heated strip and
where the conduction takes place solely across the layer withthe region of non-zero temperature thickens. Once the fluid
neither conduction nor advection up the layer. As the value is downstream of the heated strip there is gradual recovery
of P increases, forced convective effects become strongertowards the zero heat transfer situation where the fluid in the
and the effect of the localisdueating spreads increasingly channel returns to a uniform temperature.
far downstream. Once the Péclet number is as large as In Fig. 4 the heat transfer on the uncooled walk= 1,
100 a distinct boundary layer has formed, which only just is shown. This figure illustrates how effective the flow is
impinges on the unheated wall within the computational in delaying the spread of the thermal field to the= 1
domain used. surface. The position of maximum absolute heat transfer
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- P=2

«— P =10

T

Fig. 4. Variation withx of the heat transfer at the right wall far= 2.5 and
for P=10"%,1, 2,5, 10, 20, 50, and 100.

travels downstream ag increases. Moreover, the largest
absolute heat transfer alstecreases with increasing
simply because the fluid hasatrelled further along a cold
channel before the peak is encountered.

Figs. 5-8 are concerned with the effects of varying
for one value of P, namely, P = 100. Fig. 5 shows the
isotherms and streamlines for these cases. Sihee100
the flows already show a distinct boundary layer character.
The primary effect of increasing is to increase the free
convective effects. This is seen in two different ways in
Fig. 5(a): first, the thermal fie spreads further downstream

and second, the thermal boundary layer becomes thinner
near the heated strip. Both of these effects may be attributed

to greater streamwise velties induced within the cavity.
The corresponding streamlines in Fig. 5(b) show a much
greater distortion than those shown in Fig. 2(b). When

is relatively large the flowfield near the heated strip is very
similar qualitatively to thatcorresponding to an isolated
heated surface in an unbounded fluid; a distinct entrainment
into the developing thermal boundary layer is evident.

In each numerical simulation we calculated the minimum
streamwise velocity, mipdy/dy, as a function ofx. In
Fig. 6 we display these values for the caRBe= 100. The
position of minimum streamwise velocity, which always
occurs on the cold surface, moves forwardiamcreases.
However, whenx = 1223856, the minimum streamwise
velocity is zero, and therefore, at greater values dfere
is recirculation.

The local heat transfers from each surface are shown in
Figs. 7 and 8, where it is important to note the different
scalings on both axes. The position of the maximum absolute
rate of heat transfer on the hot surfaceyat 0 is affected
only very slightly by variations im, since the flow may
be regarded as being within the boundary layer regime

495

10 12.23856

e

—_——————

=—————

————

————

._,'_—/—\

o

—

=

P=10"* 12.23856

(b)

Fig. 5. (a) Isotherms and (b) streamlines for= 100 andx = 10~4 (top
frame), 1, 2, 5, 10, and 12.23856. 19 equally spaced isotherms are drawn at
an interval of 0.05 and 9 equally spaced streamlines at an interval of 0.1.

due to the size ofP, and therefore changes ih serve
only to modify the thickness of the boundary layer. On
the other hand, at the cold surface, the position when
the magnitude of the heat transfer is maximised moves
further downstream as increases. This is consistent with
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Fig. 8. Variation withx of the heat transfer at the right wall fat = 100
Fig. 6. Variation withx of the minimum streamwise velocity fa? = 100 andx=10"%,1,2,5, 10, and 12.23856.
and = 104 (top frame), 1, 2, 5, 10, and 12.23856 (bottom frame).

20 . . , . , . . . '
90 1.2F 4
1oy 1.0} ]
0 0.8}
Ae
0.6} ]
-1oy — P =10""
«~— P=1
— P=2 0.4F
-20¢ . e
«— P=5
\ 0.2}
30p )
|:<——P:10
Vooo+— P =12.23856 0.0 )
B T T R Y S T 1.0 0.5 0.0 0.5 1.0 1.5 2.0

log,o P

Fig. 7. Variation withx of the heat transfer at the left wall fét = 100 and

P Fig. 9. Variation with logg P of the value ofs above which separation
»=10"%,1,2,5, 10, and 12.23856.

occurs and the corresponding valuexadt which separation first arises.

the increasing vigour of the flow rendering cross-stream
conduction less effective. shown in Fig. 9. WhenP is small the critical value of

In the two main cases considered so far, the results A is close to 2, which is consistent with the analysis of
we were able to obtain are, in general, subject to the Section 3.1 and the comment in the third paragraph of this
restriction that there must be no recirculation. For example, section. Numerically we find that, = 2 + O(P?) when
for P =100, we able to compute a flow for whigh= 12.3, P < 1. On the other hand, faP > 1, theni, ~ 1.22P%/2,
but not for . = 124 for which recirculation is stronger. The corresponding critical values ofarex, ~ 0.13P for
Therefore we have computed, for the sake of reference, theP « 1 andx. ~ 0.05P for P > 1. The coefficients quoted
value of A above which recirculation occurs as a function here are necessarily inaccurate because they are not only
of P, and the corresponding value af at which the subject to the discretisation errors inherent in the Keller-box
minimum streamwise velocity is zero. These values are method, but are also subject to interpolation errors due to



I. Pop et al. / International Journal of Thermal Sciences 43 (2004) 489-498 497

the fact that they are obtained from discrete solutions of a 9©/3Y |y—o, retains the same shape as those shown in

marching method. Figs.3and 7.

Fig. 10 compares the heat transfer on the wat 0 Finally, Fig. 12 shows the isotherms and streamlines in
which is obtained by solving Egs. (22) and (23) foe= 1 the P — oo limit for various values of.. All the streamlines
and P = 50,100, with that obtained from the® — oo are depicted at intervals of 1 in order to facilitate comparison
boundary layer equations, (40) and (41). It is found that between the cases. It is seen that the shapes of the thermal
P~Y236/3y|,—0 matches very well withh®/3Y|y—o. In boundary layer match well with th& = O(1) cases (see

fact, Fig. 11 shows that the asymptotic rate of heat transfer, Figs. 2(a) and 12(a)). However, whenis large, there is
a thinning of the thermal boundary layer. The streamlines
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